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Effects of Foot Strike Techniques on 
Running Biomechanics: A Systematic 
Review and Meta-analysis
Yilin Xu, MEd,*† Peng Yuan, PhD, CSCS,† Ran Wang, PhD,‡ Dan Wang, PhD,‡ Jia Liu, MS,§  
and Hui Zhou, PhD||

Content: Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also 
common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks.

Objective: To determine the effects of foot strike techniques on running biomechanics.

Data Sources: The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception 
through November 2018.

Study Selection: The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were 
eligible for inclusion in this meta-analysis.

Study Design: Systematic review and meta-analysis.

Level of Evidence: Level 4.

Data Extraction: Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard 
mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) 
groups using a random-effects model.

Results: FFS showed significantly smaller magnitude (SMD, −1.84; 95% CI, −2.29 to −1.38; P < 0.001) and loading rate 
(mean: SMD, −2.1; 95% CI, −3.18 to −1.01; P < 0.001; peak: SMD, −1.77; 95% CI, −2.21 to −1.33; P < 0.001) of impact force, 
ankle stiffness (SMD, −1.69; 95% CI, −2.46 to −0.92; P < 0.001), knee extension moment (SMD, −0.64; 95% CI, −0.98 to −0.3; 
P < 0.001), knee eccentric power (SMD, −2.03; 95% CI, −2.51 to −1.54; P < 0.001), knee negative work (SMD, −1.56;  
95% CI, −2.11 to −1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, −0.71; 95% CI, −1.28 to −0.14; P = 0.01; 
integral: SMD, −0.63; 95% CI, −1.11 to −0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle 
plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08; 
P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 
1.6; P < 0.001) compared with RFS.

Conclusion: Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral 
joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike 
techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.
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Distance running is one of the most popular physical 
activities, and it is associated with a high rate of 
running-related injuries (RRIs). The rate of RRIs is 

reported to be 19.4% to 79.3%,44 and 56% of runners with 
overuse injuries sustain multiple injuries at least once during a 
2-year observation.31 Furthermore, a recent meta-analysis 
showed that the incidence of RRIs per 1000 hours of running 
ranged from 2.5 to 33.0.47

Given the high prevalence and incidence, various 
biomechanical variables have been investigated to reveal the 
underlying mechanisms of RRIs. Among these variables, high 
and repetitive applied impact load, including the magnitude and 
loading rate of impact force (the vertical ground-reaction force 
[VGRF] during the deceleration phase of running), has been 
implicated as an important etiologic factor for RRI.23 A 
prospective study by Bredeweg et al3 found that the impact 
force loading rate was the only predictor of all RRI types in 
novice male runners. Increased impact force loading rate was 
reported to contribute to the development of lower limb stress 
fracture,42,52 plantar fasciitis,35 and all RRI types.23,42 Also, the 
excessive biomechanical demands directly imposed on local 
structures and tissues may contribute to RRIs. For example, an 
increase in patellofemoral joint stress (PFJS) has been proposed 
to cause patellofemoral pain (PFP).9,17

The relationship between biomechanical variables and risks 
for RRI has prompted numerous running injury reduction 
strategies, such as modification of running techniques and 
control of running distance.4 Among running technique 
modifications, special attention has been given to foot strike 
techniques. A retrospective study reported that rearfoot strike 
(RFS) induced a significantly higher rate of stress injury 
compared with forefoot strike (FFS).13 RFS results in a 
significant increase in magnitude33 and loading rate11,51 of 
impact force, knee eccentric power,24,40,49 and PFJS15,45 
compared with FFS. Furthermore, a recent running retraining 
study revealed that converting from RFS to a non-RFS could 
alleviate the symptoms of runners with PFP.12 However, FFS 
increases ankle eccentric power,40,49 and peak Achilles tendon 
(AT) stress29 and force36 when compared with RFS, which may 
be responsible for higher risk of ankle injuries. Taken together, 
these findings indicate that different foot strike techniques may 
impose various effects on structures or tissues and further 
influence risks for RRI.

Although there was 1 review in which the biomechanical 
differences of foot strike techniques were examined, several 
confounding factors were not well controlled in the specific 
meta-analyses.1 Data from studies on running barefoot or with 
shoes, such as ankle angle and VGRF, were pooled in specific 
meta-analyses. However, recent evidence indicates significant 
interaction in certain biomechanical variables between foot 
strike technique and footwear.36 The potential confounder can 
substantially reduce the quality of evidence if not controlled. 
Furthermore, there is a paucity of reviews examining the effects 
of foot strike techniques on relevant biomechanical risk factors 

of RRI, such as knee moments40 and PFJS.9,17 Therefore, the 
purpose of this systematic review and meta-analysis is to, 
independently and comprehensively, determine effects of foot 
strike techniques on ground-reaction force and biomechanical 
joint variables during running.

Methods
Search Strategy

Relevant articles were searched using the databases of Web of 
Science, PubMed, EMBASE, and EBSCO online from inception 
through November 2018. Combinations of the following 
keywords were used: run* OR jog*; foot strik* OR foot land* OR 
foot fall* OR forefoot strik* OR rearfoot strik* OR mid-foot strik* 
OR heel strik* OR toe strik*; lower extremit* OR lower limb* OR 
ankle OR knee OR hip; and biomechanic* OR kinematic* OR 
kinetic* OR ground reaction force OR impact force OR collision 
force OR mechanical loading OR loading rate OR moment OR 
torque OR power OR electromyography OR EMG OR muscle 
activ*.

Study Selection

Two reviewers independently identified the relevant studies 
after the selection process. Initially, the titles and abstracts of the 
relevant studies were screened against the inclusion criteria. 
Next, if sufficient information was not included in the title and 
abstract to determine inclusion, the full text was examined. The 
following inclusion criteria were applied: (1) studies that 
assessed healthy adult runners participating in distance running, 
(2) FFS and RFS were compared and must have been performed 
by participants from the same group, (3) participants had to 
wear shoes while running over ground or on a treadmill 
without slope, (4) the evaluated variables had to be those that 
relate to running biomechanics, and (5) the studies had to be 
peer-reviewed and written in English.

Data Extraction

Two reviewers extracted the characteristics and outcomes of 
each eligible study, including first author, publication year, 
methods, sample size, participant characteristics, natural foot 
strike pattern, foot strike comparison, and other variables. 
Relevant outcomes included ground-reaction force variables 
(magnitude and loading rate of impact force and VGRF) and 
biomechanical joint variables (ankle, knee, and hip angle; 
excursion; moment; eccentric power and axial contact force; 
ankle and knee stiffness and negative work; and PFJS).

Assessment of Risk of Bias

The modified version of the Downs and Black Quality Index 
was used to assess the risk of bias of the eligible studies.16 The 
scale, which was previously applied to running-related 
reviews,1,19 consisted of 20 items. Studies with scores of 0 to 6 
were categorized as high risk of bias, 7 to 13 as moderate risk 
of bias, and 14 to 20 as low risk of bias.1
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Data Analysis

While there are typically 3 categorical classifications of foot 
strike techniques, participants from natural FFS and natural 
midfoot strike (MFS) are often combined into the FFS 
group.6,7,8,18,33 Therefore, the meta-analyses were performed on 
biomechanical outcomes for 2 classifications: FFS (FFS or FFS/
MFS) and RFS. The data, which came from 2 natural foot strike 
techniques6,7,8,18,37,40 or speeds,24 were respectively pooled with 
formulae previously reported by Wang et al.48 The data captured 
at preferred step length and frequency and medium speed were 
included when there were more than 2 step length, step 
frequency, and speed conditions.18,29,50 Also, the data collected 
before a long run were analyzed to avoid the effect of fatigue.30

Statistical Analysis

Inverse variance with the random-effects model was used to 
calculate the standard mean difference (SMD) using Review 
Manager (RevMan 5.3). The effect size of each eligible study 
was presented as SMD with 95% CI. The statistical heterogeneity 
among studies was identified using the chi-square and I2 
statistics (heterogeneity defined as P < 0.05 and/or I2 > 75%).22 
A P value <0.05 was accepted as statistically significant for the 
overall effect.

Results
Search Results

A total of 36 articles met the inclusion criteria, and 10 studies 
were further excluded from quantitative synthesis due to 
insufficient data. Finally, 26 studies with 472 participants  
were eligible for inclusion in this meta-analysis  
(Figure 1).5-8,10,11,14,15,18,20,24,27,29,30,33,34,36,37,39-41,45,46,49-51

Study Characteristics

Sample sizes of the included studies varied from 9 participants1 
to 42.6 The participants’ natural foot strike pattern was RFS in 13 
studies,5,11,14,15,24,27,30,36,39,45,46,49,51 and FFS in only 1 study.34 Of  
the studies, 11 included 2 groups of runners (those whose 
natural strike pattern was RFS and those whose natural strike 
pattern was FFS/MFS),6-8,10,18,20,29,37,40,41,50 while there was only 1 
study in which the natural foot strike pattern of participants was 
FFS/MFS or RFS.33 Running speed ranged from 2.5 m/s11,39 to 
4.55 m/s.24 The characteristics of the eligible studies are 
summarized in Table A1 in the Appendix (available in the 
online version of this article).

Risk of Bias

All 26 studies were classified as moderate risk of bias, and the 
mean risk of bias score for the included studies was 11.35 out 
of 20 (range, 10-13) (Table A2 in the Appendix, available 
online).

Ground-Reaction Force Variables

FFS was found to be associated with significantly smaller  
peak impact force (P < 0.001)8,33 as well as average  

(P < 0.001)11,24,27,39,51 and peak impact force loading rate  
(P < 0.001)11,36,39,51 compared with RFS (Table 1 and Figures 
A1a-A1c in the Appendix, available online). On the contrary, 
FFS was associated with significantly greater peak VGRF 
compared with RFS (P < 0.001) (Table 1 and Figure A1d in the 
Appendix, available online).15,24,27,41,45

Biomechanical Joint Variables

FFS was associated with a more plantarflexed ankle at initial 
contact (IC) (P < 0.001),14,18,29,36,39,49 smaller peak ankle 
dorsiflexion angle (P < 0.001),5,14,24,36 and greater ankle 
excursion (P = 0.01)24,30,39,41 compared with RFS (Table 1 and 
Figures A2a-A2c in the Appendix, available online).

There were no significant differences between FFS and RFS for 
knee flexion angle at IC (P = 0.66)14,29,39,45,49 and peak knee 
flexion angle (P = 0.09)5,14,15,24,45 (Table 1 and Figures A3a and 
A3b in the Appendix, available online). However, FFS 
significantly decreased knee flexion excursion compared with 
RFS (P < 0.001) (Table 1 and Figure A3c in the Appendix, 
available online).24,27,30,34,39,41,45

No significant differences were observed between FFS  
and RFS on hip flexion angle at IC (P = 0.99)14,39,49 and peak  
hip flexion angle (P = 0.35)5,14,46 and adduction angle  
(P = 0.14)5,14,46,51 (Table 1 and Figures A4a-A4c in the Appendix, 
available online). FFS significantly decreased hip flexion 
excursion compared with RFS (P = 0.04) (Table 1 and Figure 
A4d in the Appendix, available online).39,41

It was found that FFS was associated with significantly greater 
peak ankle plantarflexion moment (P < 0.001),15,24,30,36,40,41 
eccentric power (P < 0.001),24,40,49 negative work (P = 0.001),10,40 
and axial contact force (P < 0.001)7,11,37 compared with RFS 
(Table 1 and Figure A5a-A5d in the Appendix, available online). 
However, FFS decreased ankle stiffness significantly compared 
with RFS (P < 0.001) (Table 1 and Figure A5e in the Appendix, 
available online).20,30

FFS significantly reduced peak knee extension moment  
(P < 0.001),15,24,30,40,41 eccentric power (P < 0.001)24,40,49 and 
negative work (P < 0.001)10,40 as well as peak (P = 0.01)7,15,45,50 
and integral PFJS (P = 0.01)15,45 compared with RFS (Table 1 and 
Figures A6a-A6e in the Appendix, available online). In addition, 
no significant differences were found between FFS and RFS for 
peak knee axial contact force (P = 0.07)7,37 and stiffness  
(P = 0.15)20,30 (Table 1 and Figures A6f and A6g in the 
Appendix, available online).

No significant differences were found between FFS and RFS 
for peak hip extension moment (P = 0.31),15,40,41 eccentric 
power (P = 0.07),40,49 and axial force (P = 0.58)7,37 (Table 1 and 
Figures A7a-A7c in the Appendix, available online).

Discussion

FFS has lower magnitude and loading rate of impact force 
compared with RFS. The difference in impact load between FFS 
and RFS is likely attributed to vertical compliance, as a more 
compliant joint absorbs greater impact energy than a stiffer 
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joint.20,28,31 Running with FFS increases vertical compliance, and 
vertical compliance negatively correlates with average impact 
force loading rate.28 The ankle can be considered one of the 
primary joints to reduce impact load during foot-ground contact. 
It converts part of the translational kinetic energy into rotational 
kinetic energy when running with FFS,28 which can be achieved 
by increased ankle motion25 and plantarflexor force.45 Current 
evidence indicates that the higher impact force loading rate may 
influence the risks of stress fracture,42,52 plantar fasciitis,35 and all 
RRI types.23,42 Taken together, RFS may potentially increase the 
risk of RRI, in particular stress fractures and plantar fasciitis. 
Moreover, FFS was also found to associate with greater peak 
VGRF compared with RFS in this review. The greater 

plantarflexor force over greater ankle excursion is responsible 
for the increased peak VGRF when running with FFS.5,45 The 
greater peak VGRF is likely not the primary contributor to the 
risk of RRI,23,42 and the relationship between peak VGRF and 
RRI requires further investigation.

FFS significantly increased ankle eccentric power and negative 
work compared with RFS. It was supported by the finding that 
FFS was associated with significantly smaller ankle stiffness 
compared with RFS. As mentioned previously, FFS with a more 
compliant ankle joint can absorb higher impact energy at the 
ankle compared with RFS.20,28,31 The eccentric contraction of the 
plantarflexors is the primary contributor to ankle joint negative 
work.21,53 Greater impact energy absorbed at the ankle joint is 

Figure 1.  Flowchart of the study screening process.
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Table 1.  Pooled effects of the foot strike techniques on ground-reaction force and biomechanical joint variables

Variables No. of Related Studies SMD (95% CI)a P

Ground-reaction force variables

  Peak impact force 2 −1.84 (–2.29, –1.38) <0.001*

  Average impact force loading rate 5 −2.1 (–3.18, –1.01) <0.001*

  Peak impact force loading rate 4 −1.77 (–2.21, –1.33) <0.001*

  Peak VGRF 5 0.84 (0.52, 1.15) <0.001*

Biomechanical joint variables

  Ankle angle at IC 6 −4.16 (–4.83, –3.49) <0.001*

  Peak ankle dorsiflexion angle 4 −0.83 (–1.14, –0.52) <0.001*

  Ankle excursion on sagittal plane 4 1.41 (0.29, 2.54) 0.01*

  Knee flexion angle at IC 5 0.23 (–0.79, 1.25) 0.66

  Peak knee flexion angle 5 −0.24 (–0.52, 0.03) 0.09

  Knee flexion excursion 7 −0.78 (–1.09, –0.47) <0.001*

  Hip flexion angle at IC 3 0 (–0.35, 0.35) 0.99

  Peak hip flexion angle 3 −0.15 (–0.48, 0.17) 0.35

  Peak hip adduction angle 4 −0.19 (–0.45, 0.07) 0.14

  Hip flexion excursion 2 −0.55 (–1.09, –0.02) 0.04*

  Peak ankle plantarflexion moment 6 1.31 (0.66, 1.96) <0.001*

  Peak ankle eccentric power 3 1.63 (1.18, 2.08) <0.001*

  Peak ankle negative work 2 2.60 (1.02, 4.18) 0.001*

  Peak ankle axial contact force 3 1.26 (0.93, 1.6) <0.001*

  Peak ankle stiffness 2 −1.69 (–2.46, –0.92) <0.001*

  Peak knee extension moment 5 −0.64 (–0.98, –0.3) <0.001*

  Peak knee eccentric power 3 −2.03 (–2.51, –1.54) <0.001*

  Peak knee negative work 2 −1.56 (–2.11, –1.0) <0.001*

  Peak PFJS 4 −0.71 (–1.28, –0.14) 0.01*

  Integral PFJS 2 −0.63 (–1.11, –0.15) 0.01*

  Peak knee axial contact force 2 0.35 (–0.03, 0.72) 0.07

  Peak knee stiffness 2 1.45 (–0.51, 3.4) 0.15

  Peak hip extension moment 3 0.19 (–0.18, 0.57) 0.31

  Peak hip eccentric power 2 −0.8 (–1.66, 0.06) 0.07

  Peak hip axial contact force 2 0.1 (–0.24, 0.43) 0.58

IC, initial contact; PFJS, patellofemoral joint stress; VGRF, vertical ground-reaction force.
aIn the SMD column, positive values indicate that forefoot strike (FFS) is larger than rearfoot strike (RFS), and negative values indicate that RFS is larger than 
FFS.
*Statistical significance between FFS and RFS.
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transmitted to AT,32 which can increase AT load. Furthermore, 
FFS was associated with increased ankle excursion and reduced 
knee flexion excursion in this review, which indicates that more 
energy is likely absorbed at the ankle than the knee. However, 
lesser knee flexion excursion during running may be a risk 
factor for AT injuries.2 Also, FFS is linked to higher ankle axial 
contact force in this review. Joint contact force is primarily 
composed of muscle forces and joint reaction forces across the 
joint during normal range of movement, and muscle forces are 
the major contributor to joint contact force compared with joint 
reaction forces.38 Higher ankle axial contact force indicates 
greater plantarflexor force, which likely contributes to the 
increased AT stress and strain and further to the pathomechanics 
of AT injuries when running with FFS.26 This review shows that 
FFS imposes higher biomechanical loads on the ankle joint 
(including AT) and potentially increases the risks of RRI at the 
ankle joint, in particular AT injuries, compared with RFS.

On the contrary, RFS is associated with greater knee eccentric 
power and negative work compared with FFS. More energy is 
absorbed at the knee than at the ankle when running with 
RFS,10,20 which can be attributed to a more compliant knee and 
stiffer ankle.20,30 RFS significantly elevates peak and integral PFJS 
compared with FFS, which may potentially contribute to PFP 
based on the relationship between the etiology of PFP and 
PFJS.9,17 The difference in PFJS between RFS and FFS is likely 
attributed to the differential knee extension moment and 
quadriceps force.15,43,45 Combining these findings, the current 
review suggests that RFS may increase the biomechanical loads 
experienced at the knee joint (including patellofemoral joint) 
and potentially elevate the risk of RRI at knee, particularly PFP, 
compared with FFS.

Seven hip joint–related variables were included in the 
meta-analysis. Hip flexion excursion was the only variable that 
was significantly influenced by the foot strike pattern. FFS was 
associated with increased ankle excursion and reduced hip and 
knee excursion on the sagittal plane compared with RFS. The 
various motion patterns across the lower limb joints can help 
control the movement of the body center of mass in the vertical 
direction aimed to modify energy absorption at different 
joints.28,40 However, this review found no significant differences 
in hip kinetic variables between FFS and RFS, indicating that 
foot strike pattern has little biomechanical effect on hip joint 
kinetics during running.

Conclusion

Running with RFS was linked to the increasing impact loads and 
placed higher biomechanical loads on structures or tissues 
around the knee and patellofemoral joints. However, running 
with FFS placed higher biomechanical loads on more distal 
structures, such as the ankle joint and Achilles tendon. The 
influence of foot strike techniques on running biomechanics 
indicates that the foot strike techniques are likely used to 
modulate the biomechanical loads of various structures or 
tissues during running.
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